Custom Search

Friday, January 27, 2012

Piezoelectric Transducers

The conversion of electrical pulses to mechanical vibrations and the conversion of returned mechanical vibrations back into electrical energy is the basis for ultrasonic testing. The active element is the heart of the transducer as it converts the electrical energy to acoustic energy, and vice versa. The active element is basically a piece of polarized material (i.e. some parts of the molecule are positively charged, while other parts of the molecule are negatively charged) with electrodes attached to two of its opposite faces. When an electric field is applied across the material, the polarized molecules will align themselves with the electric field, resulting in induced dipoles within the molecular or crystal structure of the material. This alignment of molecules will cause the material to change dimensions. This phenomenon is known as electrostriction. In addition, a permanently-polarized material such as quartz (SiO2) or barium titanate (BaTiO3) will produce an electric field when the material changes dimensions as a result of an imposed mechanical force. This phenomenon is known as the piezoelectric effect.

The active element of most acoustic transducers used today is a piezoelectric ceramic, which can be cut in various ways to produce different wave modes. A large piezoelectric ceramic element can be seen in the image of a sectioned low frequency transducer. Preceding the advent of piezoelectric ceramics in the early 1950's, piezoelectric crystals made from quartz crystals and magnetostrictive materials were primarily used. The active element is still sometimes referred to as the crystal by old timers in the NDT field. When piezoelectric ceramics were introduced, they soon became the dominant material for transducers due to their good piezoelectric properties and their ease of manufacture into a variety of shapes and sizes. They also operate at low voltage and are usable up to about 300oC. The first piezoceramic in general use was barium titanate, and that was followed during the 1960's by lead zirconate titanate compositions, which are now the most commonly employed ceramic for making transducers. New materials such as piezo-polymers and composites are also being used in some applications.

The thickness of the active element is determined by the desired frequency of the transducer. A thin wafer element vibrates with a wavelength that is twice its thickness. Therefore, piezoelectric crystals are cut to a thickness that is 1/2 the desired radiated wavelength. The higher the frequency of the transducer, the thinner the active element. The primary reason that high frequency contact transducers are not produced is because the element is very thin and too fragile.

Characteristics of Piezoelectric Transducers

The transducer is a very important part of the ultrasonic instrumentation system. As discussed on the previous page, the transducer incorporates a piezoelectric element, which converts electrical signals into mechanical vibrations (transmit mode) and mechanical vibrations into electrical signals (receive mode). Many factors, including material, mechanical and electrical construction, and the external mechanical and electrical load conditions, influence the behavior of a transducer. Mechanical construction includes parameters such as the radiation surface area, mechanical damping, housing, connector type and other variables of physical construction. As of this writing, transducer manufacturers are hard pressed when constructing two transducers that have identical performance characteristics.

A cut away of a typical contact transducer is shown above. It was previously learned that the piezoelectric element is cut to 1/2 the desired wavelength. To get as much energy out of the transducer as possible, an impedance matching is placed between the active element and the face of the transducer. Optimal impedance matching is achieved by sizing the matching layer so that its thickness is 1/4 of the desired wavelength. This keeps waves that were reflected within the matching layer in phase when they exit the layer (as illustrated in the image to the right). For contact transducers, the matching layer is made from a material that has an acoustical impedance between the active element and steel. Immersion transducers have a matching layer with an acoustical impedance between the active element and water. Contact transducers also incorporate a wear plate to protect the matching layer and active element from scratching.
The backing material supporting the crystal has a great influence on the damping characteristics of a transducer. Using a backing material with an impedance similar to that of the active element will produce the most effective damping. Such a transducer will have a wider bandwidth resulting in higher sensitivity. As the mismatch in impedance between the active element and the backing material increases, material penetration increases but transducer sensitivity is reduced.

Transducer Efficiency, Bandwidth and Frequency

Some transducers are specially fabricated to be more efficient transmitters and others to be more efficient receivers. A transducer that performs well in one application will not always produce the desired results in a different application. For example, sensitivity to small defects is proportional to the product of the efficiency of the transducer as a transmitter and a receiver. Resolution, the ability to locate defects near the surface or in close proximity in the material, requires a highly damped transducer.

It is also important to understand the concept of bandwidth, or range of frequencies, associated with a transducer. The frequency noted on a transducer is the central or center frequency and depends primarily on the backing material. Highly damped transducers will respond to frequencies above and below the central frequency. The broad frequency range provides a transducer with high resolving power. Less damped transducers will exhibit a narrower frequency range and poorer resolving power, but greater penetration. The central frequency will also define the capabilities of a transducer. Lower frequencies (0.5MHz-2.25MHz) provide greater energy and penetration in a material, while high frequency crystals (15.0MHz-25.0MHz) provide reduced penetration but greater sensitivity to small discontinuities. High frequency transducers, when used with the proper instrumentation, can improve flaw resolution and thickness measurement capabilities dramatically. Broadband transducers with frequencies up to 150 MHz are commercially available.

Transducers are constructed to withstand some abuse, but they should be handled carefully. Misuse, such as dropping, can cause cracking of the wear plate, element, or the backing material. Damage to a transducer is often noted on the A-scan presentation as an enlargement of the initial pulse.

Article Source:


Sunday, January 15, 2012

Measurments via transmitters

Measurement - Transmitter:


Measurements have got to be one of the most important equipment in any processing plant.  Any decision made on what the plant should do is based on what the measurements tell us.  In the context of process control, all controller decisions are similarly based on measurements.

With the advent of computers, it is now possible to do inferential measurements, meaning telling the value of a parameter without actually measuring it physically.  It should however, be remembered that inferential measurement algorithms are also based on physical measurements.  Therefore, rather than rendering measurements redundant, they have made measurements all the more important.

Pressure Measurement

The measurement of pressure is considered the basic process variable in that it is utilized for measurement of flow (difference of two pressures), level (head or back pressure), and even temperature (fluid pressure in a filled thermal system).
All pressure measurement systems consist of two basic parts: a primary element, which is in contact, directly or indirectly, with the pressure medium and interacts with pressure changes; and a secondary element, which translates this interaction into appropriate values for use in indicating, recording and/or controlling.

An electronic-type transmitter is shown in the figure above. This particular type utilizes a two-wire capacitance technique.

Process pressure is transmitted through isolating diaphragms and silicone oil fill fluid to a sensing diaphragm in the center of the cell. The sensing diaphragm is a stretched spring element that deflects in response to differential pressure across it. The displacement of the sensing diaphragm is proportional to the differential pressure. The position of the sensing diaphragm is detected by capacitor plates on both sides of the sensing diaphragm. The differential capacitance between the sensing diaphragm and the capacitor plates is converted electronically to a 4-20 mA dc signal.

Flow Measurement

Numerous types of flowmeters are available for closed-piping systems. In general, the equipment can be classified as differential pressure, positive displacement, velocity and mass meters.

Differential pressure devices include orifices, venturi tubes, flow tubes, flow nozzles, pitot tubes, elbow-tap meters, target meters, and variable-area meters.
Pressure transmitter

Positive displacement meters include piston, oval-gear, nutating-disk, and rotary-vane types. Velocity meters consist of turbine, vortex shedding, electromagnetic, and sonic designs.

Mass meters include Coriolis and thermal types. The measurement of liquid flows in open channels generally involves weirs and flumes.

Temperature Measurement
Temperature can be measured via a diverse array of sensors. All of them infer temperature by sensing some change in a physical characteristic. Six types with which the engineer is likely to come into contact are: thermocouples, resistive temperature devices (RTDs and thermistors), infrared radiators, bimetallic devices, liquid expansion devices, and change-of-state devices.

Article Source:


Wednesday, January 11, 2012

Process Control Fundamentals

This PDF file Process Control Fundamentals shown below is published by As I have gone through this e-book I found it very useful so as to understand the basics of process control.

It covers the following topics: 

  • Introduction
  • The Importance of Process Control
  • Control Theory Basics
  • Components of Control Loops and ISA Symbology
  • Controller Algorithms and Tuning
  • Process Control Loops

Process Control Fundamentals


This PDF is uploaded  because I found it meanigless or difficult for readers to go through a number of post or a lengthy post to get the complete fundamentals. This e-book that I have provided here can be downloaded easily by a simple click and you can refer on your own convenience. A great thanks to  to publish this e-book. Really helpful.  

Article Source:


Tuesday, January 10, 2012

Elements of a Process Control System


-The term automatic process control came into wide use when people learned to adapt automatic regulatory procedures to manufacture products or process material more efficiently. Such procedures are called automatic because no human (manual) intervention is required to regulate them.

-All process systems consist of three main factors or terms: the manipulated variables, disturbances, and the controlled variables. Typical manipulated variables are valve position, motor speed, damper position, or blade pitch. The controlled variables are those conditions, such as temperature, level, position, pressure, pH, density, moisture content, weight, and speed, that must be maintained at some desired value. For each controlled variable there is an associated manipulated variable. The control system must adjust the manipulated variables so the desired value or “set point” of the controlled variable is maintained despite any disturbances.

Elements of a Process Control System

-The following figure illustrates the essential elements of a process control system. In the system shown, a level transmitter (LT), a level controller (LC), and a control valve (LV) are used to control the liquid level in a process tank. The purpose of this control system is to maintain the liquid level at some prescribed height (H) above the bottom of the tank. It is assumed that the rate of flow into the tank is random. The level transmitter is a device that measures the fluid level in the tank and converts it into a useful measurement signal, which is sent to a level controller. The level controller evaluates the measurement, compares it with a desired set point (SP), and produces a series of corrective actions that are sent to the control valve. The valve controls the flow of fluid in the outlet pipe to maintain a level in the tank.

-Thus, a process control system consists of four essential elements: process, measurement, evaluation, and control. A block diagram of these elements is shown in the following figure. The diagram also shows the disturbances that enter or affect the process. If there were no upsets to a process, there would be no need for the control system. The figure also shows the input and output of the process and the set point used for control.


In general, a process consists of an assembly of equipment and material that is related to some manufacturing operation or sequence. In the example presented, the process whose liquid level is placed under control includes such components as a tank, the liquid in the tank, and the flow of liquid into and out of the tank, and the inlet and outlet piping. Any given process can involve many dynamic variables, and it may be desirable to control all of them. In most cases, however, controlling only one variable will be sufficient to control the process to within acceptable limits. One occasionally encounters a multivariable process in which many variables, some interrelated, require regulation.

- To control a dynamic variable in a process, you must have information about the entity or variable itself. This information is obtained by measuring the variable.

- Measurement refers to the conversion of the process variable into an analog or digital signal that can be used by the control system. The device that performs the initial measurement is called a sensor or instrument. Typical measurements are pressure, level, temperature, flow, position, and speed. The result of any measurement is the conversion of a dynamic variable into some proportional information that is required by the other elements in the process control loop or sequence.


- In the evaluation step of the process control sequence, the measurement value is examined, compared with the desired value or set point, and the amount of corrective action needed to maintain proper control is determined. A device called a controller performs this evaluation. The controller can be a pneumatic, electronic, or mechanical device mounted in a control panel or on the process equipment. It can also be part of a computer control system, in which case the control function is performed by software.


The control element in a control loop is the device that exerts a direct influence on the process or manufacturing sequence. This final control element accepts an input from the controller and transforms it into some proportional operation that is performed on the process. In most cases, this final control element will be a control valve that adjusts the flow of fluid in a process. Devices such as electrical motors, pumps, and dampers are also used as control elements.

Article Source:


Basics of Instrumentation & Control

To view more posts on BASICS : CLICK HERE


To view more posts on PRESSURE : CLICK HERE


To view more posts on FLOW : CLICK HERE


To view more posts on LEVEL : CLICK HERE


To view more posts on TEMPERATURE : CLICK HERE

Analytical Instrumentation

To view more posts on Analytical Instrumentation : CLICK HERE
Related Posts Plugin for WordPress, Blogger...

About This Blog

Hai friends…welcome to my blog. This blog is exclusively for instrumentation engineering students which will provide sources for their reference and studies. As you all know Instrumentation is now a fast emerging and developing field in Engineering. This blog has different categories like PLC, SCADA, DCS, Sensors and Transducers, Computer control of process, Industrial Instrumentation, etc.

This blog will also provide an exclusive ‘ASK ME’ section where you can make any queries and share your ideas about instrumentation. The solution for your queries will be given to you by mail from best of my knowledge and reference.

So I wish this blog may be very useful for your studies and reference.

About Me

Keep In Touch

Follow Me!

Online Queries

Popular Posts