Custom Search

Saturday, September 17, 2016

Capacitance devices : Level





Due to the difference in the dielectric constants of air and liquids, it is possible to measure level of liquids in tanks by measuring the change in the capacitance (measured between two coaxial cylinders partly immersed into the liquid) with liquid level. These devices can be used for level measurement of liquids at pressures up to 6 MPa. If liquid is conductive (specific resistance less than or equal to 105-106 Ohm*m), then cylinders (electrodes) are covered by an electrical insulation. Fig. 5.13 shows a schematic view of a capacitance device for level measurements of liquids.
Figure 5.13. Capacitance device for level measurement.


A tank 1 is filled with a liquid 2, which level is to be measured. Two electrodes (coaxial cylinders) 3 and 4 are immersed in this liquid. The value of capacitance for this device is determined by the two capacitances: that of the capacitor formed by the liquid and the electrodes, and the capacitor formed by air 5 and the electrodes. A measuring device 6 then measures the variation in the capacitance. In this system, the increase in the total capacitance is directly proportional to the increase of the level. This technique is best applied to nonconductive liquids, since it is necessary to avoid the problems generated by conducting materials like acids.

The following formula is taken from Bentley J. P. Principles of Measurement Systems, Longman, 1995, p. 145):

(5.51)

where,


However, for precise measurements we need to take into account that εair is a function of pressure, temperature and humidity:
(5.52)
and

(5.53)
where,


For polar dielectrics:
  • high dielectric permitivity, ε>12, F/m;
  • water, acetone, ethyl, methyl alcohol, etc.
For non-polar dielectrics:
  • dielectric permitivity, ε<3, F/m;
  • for condensed gases such as H2, O2 and N2 1.25<=ε<=1.5, F/m.
For weak-polar dielectrics:  
  • dielectric permittivity 3<=ε<=6, F/m.

For precision measurements an additional capacitance element is submerged in liquid to compensate for changes in the liquid characteristics.

Disadvantages of these devices are listed below:

  • these devices are not able to measure level of liquids, which have tendency to crystallise, and of very viscous liquids;

  • they are very sensitive to the variations of dielectric properties of liquids with process conditions and the variations of capacitances of connecting cables.


The range of level measurements varies from 1 to 20 m. The accuracy is equal to +/- 2.5%.


Article Source:: Dr. Alexander Badalyan, University of South Australia


0 comments:

Basics of Instrumentation & Control


To view more posts on BASICS : CLICK HERE

Pressure


To view more posts on PRESSURE : CLICK HERE

Flow


To view more posts on FLOW : CLICK HERE

Level


To view more posts on LEVEL : CLICK HERE

Temperature


To view more posts on TEMPERATURE : CLICK HERE
Related Posts Plugin for WordPress, Blogger...

About This Blog

Hai friends…welcome to my blog. This blog is exclusively for instrumentation engineering students which will provide sources for their reference and studies. As you all know Instrumentation is now a fast emerging and developing field in Engineering. This blog has different categories like PLC, SCADA, DCS, Sensors and Transducers, Computer control of process, Industrial Instrumentation, etc.

This blog will also provide an exclusive ‘ASK ME’ section where you can make any queries and share your ideas about instrumentation. The solution for your queries will be given to you by mail from best of my knowledge and reference.

So I wish this blog may be very useful for your studies and reference.

Online Queries


About Me

Keep In Touch

Follow Me!

Popular Posts

  © Blogger templates The Professional Template by Ourblogtemplates.com 2008

Back to TOP