Custom Search

Thursday, December 16, 2010


            A sensor is a device that measures a physical quantity and converts it into a signal which can be read by an observer or by an instrument. For example, a mercury-in-glass thermometer converts the measured temperature into expansion and contraction of a liquid which can be read on a calibrated glass tube. A thermocouple converts temperature to an output voltage which can be read by a voltmeter. For accuracy, most sensors are calibrated against known standards.

Sensors are used in everyday objects such as touch-sensitive elevator buttons (tactile sensor) and lamps which dim or brighten by touching the base. There are also innumerable applications for sensors of which most people are never aware. Applications include cars, machines, aerospace, medicine, manufacturing and robotics.

A sensor is a device which receives and responds to a signal. A sensor's sensitivity indicates how much the sensor's output changes when the measured quantity changes. For instance, if the mercury in a thermometer moves 1 cm when the temperature changes by 1 °C, the sensitivity is 1 cm/°C (it is basically the slope Dy/Dx assuming a linear characteristic). Sensors that measure very small changes must have very high sensitivities. Sensors also have an impact on what they measure; for instance, a room temperature thermometer inserted into a hot cup of liquid cools the liquid while the liquid heats the thermometer. Sensors need to be designed to have a small effect on what is measured, making the sensor smaller often improves this and may introduce other advantages. Technological progress allows more and more sensors to be manufactured on a microscopic scale as microsensors using MEMS technology. In most cases, a microsensor reaches a significantly higher speed and sensitivity compared with macroscopic approaches.

Classification of measurement errors

  • A good sensor obeys the following rules:
  • Is sensitive to the measured property
  • Is insensitive to any other property likely to be encountered in its application
  • Does not influence the measured property
  • Ideal sensors are designed to be linear or linear to some simple mathematical function of the measurement, typically logarithmic. The output signal of such a sensor is linearly proportional to the value or simple function of the measured property. The sensitivity is then defined as the ratio between output signal and measured property. For example, if a sensor measures temperature and has a voltage output, the sensitivity is a constant with the unit [V/K]; this sensor is linear because the ratio is constant at all points of measurement.

Sensor deviations

If the sensor is not ideal, several types of deviations can be observed:
  • The sensitivity may in practice differ from the value specified. This is called a sensitivity error, but the sensor is still linear.
  • Since the range of the output signal is always limited, the output signal will eventually reach a minimum or maximum when the measured property exceeds the limits. The full scale range defines the maximum and minimum values of the measured property.
  • If the output signal is not zero when the measured property is zero, the sensor has an offset or bias. This is defined as the output of the sensor at zero input.
  • If the sensitivity is not constant over the range of the sensor, this is called nonlinearity. Usually this is defined by the amount the output differs from ideal behavior over the full range of the sensor, often noted as a percentage of the full range.
  • If the deviation is caused by a rapid change of the measured property over time, there is a dynamic error. Often, this behaviour is described with a bode plot showing sensitivity error and phase shift as function of the frequency of a periodic input signal.
  • If the output signal slowly changes independent of the measured property, this is defined as drift (telecommunication).
  • Long term drift usually indicates a slow degradation of sensor properties over a long period of time.
  • Noise is a random deviation of the signal that varies in time.
  • Hysteresis is an error caused by when the measured property reverses direction, but there is some finite lag in time for the sensor to respond, creating a different offset error in one direction than in the other.
  • If the sensor has a digital output, the output is essentially an approximation of the measured property. The approximation error is also called digitization error.
  • If the signal is monitored digitally, limitation of the sampling frequency also can cause a dynamic error, or if the variable or added noise noise changes periodically at a frequency near a multiple of the sampling rate may induce aliasing errors.
  • The sensor may to some extent be sensitive to properties other than the property being measured. For example, most sensors are influenced by the temperature of their environment.
  • All these deviations can be classified as systematic errors or random errors. Systematic errors can sometimes be compensated for by means of some kind of calibration strategy. Noise is a random error that can be reduced by signal processing, such as filtering, usually at the expense of the dynamic behaviour of the sensor.


The resolution of a sensor is the smallest change it can detect in the quantity that it is measuring. Often in a digital display, the least significant digit will fluctuate, indicating that changes of that magnitude are only just resolved. The resolution is related to the precision with which the measurement is made. For example, a scanning tunneling probe (a fine tip near a surface collects an electron tunnelling current) can resolve atoms and molecules.actuator is something that converts energy into motion


Basics of Instrumentation & Control

To view more posts on BASICS : CLICK HERE


To view more posts on PRESSURE : CLICK HERE


To view more posts on FLOW : CLICK HERE


To view more posts on LEVEL : CLICK HERE


To view more posts on TEMPERATURE : CLICK HERE
Related Posts Plugin for WordPress, Blogger...

About This Blog

Hai friends…welcome to my blog. This blog is exclusively for instrumentation engineering students which will provide sources for their reference and studies. As you all know Instrumentation is now a fast emerging and developing field in Engineering. This blog has different categories like PLC, SCADA, DCS, Sensors and Transducers, Computer control of process, Industrial Instrumentation, etc.

This blog will also provide an exclusive ‘ASK ME’ section where you can make any queries and share your ideas about instrumentation. The solution for your queries will be given to you by mail from best of my knowledge and reference.

So I wish this blog may be very useful for your studies and reference.

Online Queries

About Me

Keep In Touch

Follow Me!

Popular Posts

  © Blogger templates The Professional Template by 2008

Back to TOP